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Key concepts

• In a parametric model, the model is represented using parameters
• a distribution over parameters implies a distribution over functions
• In Bayesian inference, we marginalize over parameters to make predictions
• Question: could we work directly in the space of functions?
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Priors on parameters induce priors on functions

A model M is the choice of a model structure and of parameter values.

fw(x) =

M∑
m=0

wmφm(x)

The prior p(w|M) determines what functions this model can generate. Example:
• Imagine we choose M = 17, and p(wm) = N(wm; 0,σ2

w).
• We have actually defined a prior distribution over functions p(f|M).

This figure is generated as follows:
• Use polynomial basis functions,
φm(x) = xm.

• Define a uniform grid of n = 100
values in x from [−1.5, 2].

• Generate matrix Φ for M = 17.
• Draw wm ∼ N(0, 1).
• Compute and plot f = Φn×18 w.
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Nuissance parameters and distributions over functions

We’ve seen that distributions over parameters induce distributions over functions.

We’ve set up a scheme where we
• first set up a model in terms a parameters
• then marginalize out the parameters

Typically, we’re not really interested in parameters, we’re interested in predictions.

The parameters are a nuissance.

Could we possibly work directly in the space of functions?
• simpler inference
• better understading of the distributions over functions
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Posterior probability of a function

Given the prior functions p(f) how can we make predictions?
• Of all functions generated from the prior, keep those that fit the data.
• The notion of closeness to the data is given by the likelihood p(y|f).
• We are really interested in the posterior distribution over functions:

p(f|y) =
p(y|f)p(f)
p(y)

Bayes Rule
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Some samples from the prior
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Samples from the posterior
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Are polynomials a good prior over functions?
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A prior over functions view
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We have learnt that linear-in-the-parameter models with priors on the weights
indirectly specify priors over functions.

True... but those priors over functions might not be good.
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... why not try to specify priors over functions directly?
What? What does a probability density over functions even look like?
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